

1 Y 17 1

1 4

Quick Start Guide

March 2020 Revision Download latest version from measci.com/ai1/doc/ai1_quickstart.pdf

Warranty

Ai1 products are warranted for twelve (12) months subject to this limited warranty

Limited Warranty: Ai1 products are warranted to be free from defects in materials and workmanship under normal use and service for twelve months from the date of shipment unless otherwise specified. Batteries, desiccant, and other consumables have no warranty. The Manufacturers obligation under this warranty is limited to repairing or replacing (at the Manufacturers option) defective Products, which shall be the sole and exclusive remedy under this warranty. Products may not be returned without prior authorization. The Customer assumes all costs of removing, reinstalling, and shipping Products to The Manufacturer. For all returns, The Customer must fill out a "Statement of Product Cleanliness and Decontamination" form and comply with the requirements specified in it. The Manufacturer reserves the right to refuse service on products that were exposed to contaminants that may cause health or safety concerns. The Manufacturer will return such Products by surface carrier prepaid within Australia. To all other locations, The Manufacturer will return such Products best way CIP (port of entry) per Incoterms [®] 2010. This warranty shall not apply to any Products which have been subjected to modification, misuse, neglect, improper service, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied. The warranty for services performed by The Manufacturer such as programming to Customer specifications or product specific training, is part of The Manufacturers product warranty. Ail products are intended to be part of a well maintained and comprehensive monitoring system. Reliable operation depends on suitable site selection, correct installation, real time monitoring of data, adequate maintenance and investigation of alarm and diagnostic information. Stations are designed to be mounted above water, submersion may result in damage. All ownership and risk transfers to the purchaser at the time of shipment. The Manufacturer does not accept any liability or consequential damages for any failure of systems supplied. Repair or service of the system is only to be handled by factory trained technicians. No service by The Customer is allowed. Refer to terms and conditions of sale for full details. THE MANUFACTURER EXPRESSLY DISCLAIMS AND EXCLUDES ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. The Manufacturer hereby disclaims, to the fullest extent allowed by applicable law, any and all warranties and conditions with respect to the Products, whether express, implied or statutory, other than those expressly provided herein.

Precautions

DANGER - MANY HAZARDS ARE ASSOCIATED WITH INSTALLING, USING, MAINTAINING, AND WORKING ON OR NEAR ROADS, RIVERS, WATER BODIES, ELEVATED PLATFORMS, REMOTE LOCATIONS AND OTHER SIMILAR HAZARDS. You are responsible for conformance with governing codes and regulations, including safety regulations, and the integrity and location of sites. Installation sites should be evaluated and approved by a qualified engineer. Prior to performing site or installation work, obtain required approvals and permits. Comply with all governing permits and use only qualified personnel. The use of licensed and qualified contractors is highly recommended. Read all applicable instructions carefully and understand procedures thoroughly before beginning work. Wear all relevant personal protective equipment, including a hardhat and eye protection, and take other appropriate safety precautions while working. You can be killed or sustain serious bodily injury if the system you are installing, constructing, using, or maintaining, or a tool, stake, or anchor, come in contact with overhead or underground utility lines. Prior to performing site or installation work, inform all utility companies and have all underground utilities marked. Comply with all electrical codes. Electrical equipment and related grounding devices should be installed by a licensed and qualified electrician. Protect all equipment from over-voltage, water and electrostatic discharge. Do not perform any work in inclement weather, including wind, rain, snow, lightning, etc. Periodically (at least yearly) check for wear and damage, including corrosion, stress cracks, frayed cables, loose clamps, fastener tightness, electrical ground connections, etc. and take necessary corrective actions. While every attempt is made to embody the highest degree of safety in all Measurement Science products, the customer assumes all risk from any injury resulting from improper installation, use or maintenance of these products. The Manufacturer recommends a level of calibration appropriate to the application, and recommends, at a minimum, recalibration every three years

Measurement Science products including the Ai1 and SDI12 sensors are distributed globally by Xylem Analytics. Please contact your local distributor for support services.

1. Contents

1. Co	ontents	3
2. Co	onfiguring your Ai1	6
2.1	Power options	6
E	(T . External Power	6
18	3WV. Dual Vertical 9W solar panels	6
18	3WA. Dual 45° Angle 9W solar panels	6
91	N or 17W. Single 45°. Towards equator orientation	6
2.2	Communications options	7
2.3	Enhancements	7
-0	iPS. Global Positioning System	7
-C	ISPLAY . Integrated display	7
-B	YPASS. USB serial port bypass to talk to smart sensors	8
-S	WITCH. High power switched outputs	8
-R	ELAY. High power switched relay outputs	8
-L	ATCH. Latching relay	8
-R	S485. RS485 serial interface	8
-S	TROBE. High visibility alarming	8
-S	IREN. Audible alarming	8
-P	UMP. Peristaltic pump	8
-6	F. Bulkhead 6-pin Micro Wet-CON connector	9
-S	OA. EXO Signal Output Adapter (SOA)	9
-0	OMPASS. Internal compass	9
-4	CCEL. Internal accelerometer for tilt measurement	9
-L	IGHT. Daylight sensor	9
-B	ARO. Internal barometer	9
-2	MP. Integrated camera	9
3. U	npacking	10
4. O	verview	10
4.1	Opening Electronics Housing	10
4.	1.1 Internal Regulators	11
4.2	Bottom Terminal Plate	12
4.	2.1 USB Port	12
4.	2.2 Power Switch	13
4.	2.3 LEDs	13
4.	2.4 I/O Terminals	15
4.	2.5 Custom Expansion Port	16
4.	2.6 Sensor Specific Wiring	19
5. M	ounting	20

5.1	Тор	mounted options	20
5.2	Bot	tom mounted sensors	21
5	5.2.1	Sensor plate	21
5	5.2.2	Panel mounted connectors	22
5	5.2.3	Customizable Gland Plate	22
5	5.2.4	Magnetic mounting feet	22
5	5.2.5	Side Cable Entry	23
5.3	Pol	e Mounting Kit	23
6. T	Fraining		24
7. S	Sensor S	pecific Considerations	26
7.1	Las	erLEVEL or UltraLEVEL	26
7.2	Car	nera	26
8. F	Power B	udget	26
9. 0	Commui	nications	29
10.	Softw	are	
11.	Data I	Destinations	32
12.	Eagle.	io connection	32
12.	1 Set	up	32
12.	2 Swa	apping an Ai1 into an existing station	33
13.	Pakbu	s Router (PBRouter)	35
13.	1 Lice	ence Details	35
13.	2 Set	ting up Ai1	35
13.	3 Set	ting up Client software	36
14.	Prepa	ring for field deployment	37
15.	Site A	cceptance Test (SAT) Form	
16.	Servic	ing	
1	l6.1.1	Battery replacement	
1	l6.1.2	Battery Shipping	
17.	Recor	nmended field tool kit	40
18.	GPS C	ptions	41
19.	Fault	Finding Process	43
ι	Jse the	sequence below to diagnose potential problems	43
20.	Diagn	ostic Tips	44
2	20.1.1	Power related issues	44
2	20.1.1	Software and diagnostics	44
21.	Sendi	ng a new program	48
22.	Decla	rations	50
22.	1 For	models including LaserLEVEL	50
2	22.1.1	Warning	50

22.1.2	Caution	50

This guide is constantly updated, the current version is available here: <u>measci.com/ai1/doc/ai1_quickstart.pdf</u>

2. Configuring your Ai1

The base Ai1 model includes the measurement and control module and weatherproof housing. The system is enhanced by adding power, communications and integrated sensors and output modules.

2.1 Power options

The most versatile package is the **Ai1-18W** which has integrated solar panels, however other options are available:

- 1. **Ai1-EXT**. Externally powered system (no internal battery or integrated solar modules). The power source can be configured to be 12V (default) or 24V. This must be specified at the time of order.
- 2. Ai1-9W. Single 9W solar panel for mounting to a pole or the Ai1 body
- 3. Ai1-18W. Dual 9W solar panels with 7Ah lithium battery. Specify Vertical (18WV) or 45° Angle (18WA)
- 4. Ai1-17W. Single 17W solar panel for mounting to a pole or the Ai1 body

EXT. External Power

Uses external power typically 12V (default) or 24V (option). The full range of operation for each power source is:

- 12V. 10 to 18Vdc
- 24V. 16 to 32Vdc

By default no internal battery is supplied with the EXT power option, however the 7Ah/12.8V battery can be supplied for internal battery backup.

18WV. Dual Vertical 9W solar panels

Suits buoy platforms where the platform is free to move and rotate. Suits higher latitudes where sun angles are lower.

Uses 2 x 9W panels and 7Ah/12.8V Lithium battery

18WA. Dual 45° Angle 9W solar panels

Suits pole mounting with fixed orientation, recommended East-West orientation for optimum charging. Also suitable for buoys for lower latitudes where the sun is commonly high in the sky.

Uses 2 x 9W panels and 7Ah/12.8V Lithium battery

9W or 17W. Single 45°. Towards equator orientation Suits fixed mounting locations. Can mount on the body of the Ai1, or with a variety of mounting options using the versatile bracket

Uses 1 x 9W or 1 x 17W panels and 7Ah/12.8V Lithium battery

Horizontal pole mount

Wall mount

Vertical pole mount

Single 9W panel option

2.2 Communications options

The Ai1 can be fitted with any of the following primary communications options.

- -3G Global 3G cellular communications (with 2G fallback)
- -4G Region specific 4G (US/EU/AU/Asia) cellular communications
- -RADIO Region specific 900MHz (US/EU/AU) radio communications
- -WIFI Wi-Fi communications
- -IRID Iridium transmitter using Short Burst Data (SBD)

Figure 1 – External Iridium option

Along with the primary communication, a local network or local control can also be used
 -REMOTE Two button remote control for nearby operations (<200m) such as turning on or off a pump
 -LORA A LoRa radio network (master & remotes) for distances up to 15km or further with repeaters.
 For these methods, specify the number of remote controls or remote stations to be supplied.

All communications modules have internal antennas although an external antenna may also be specified at the time of order for fitting high gain antennas. The Iridium module is a separate component designed to mount on top of the Ai1. Refer to the Iridium quick start guide for further details about the Iridium integration and operation.

Figure 2 – Iridium Quick Start guide

Throughout this guide the Ai1-3G model connected to Eagle.io will be used for most examples. Similar concepts apply to all models

2.3 Enhancements

Many integrated enhancements may be included at the time of order. These enhancements may be combined within the limit of the Ai1 I/O. A configurator spreadsheet is available which describes the I/O utilization for each option and confirms that the Ai1 has capacity.

-GPS. Global Positioning System

The internal GPS is a special SDI12 version to reduce the need for serial ports, being able to be read on the same port as other SDI12 sensors. This enhancement is highly recommended on moving platforms (such as buoys) or for use in high risk locations where theft may be a problem.

-DISPLAY. Integrated display

An SDI12 based display option is integrated into the top of the Ai1 for realtime monitoring of measured data. The display operates on the same SDI12 data bus as other sensors, eliminating the need for additional serial ports. No additional software is required to configure the display, using SDI12 commands to configure the parameters displayed, the names, the units and to update the values. The values update instantaneously. Using a memory screen, the display only requires power when updating values, operating at near zero power when always on. Being mounted in the top of the Ai1, the display may not be combined with some other top mounted accessories (i.e. lantern)

-BYPASS. USB serial port bypass to talk to smart sensors An additional top mounted USB port may be supplied with stations using smart sensors (such as the Sontek IQ flow meter, or Radar velocity sensor) allowing direct communications to the sensor for site specific configuration. An integrated bypass switch is used to allow direct connection for configuration, then returned to the normal position for sensor measurement by the datalogger.

-SWITCH. High power switched outputs

Dual 5V power outputs used for controlling external devices, up to 1A each. While the standard Ai1 allows for many digital outputs these are often current limited to less than 50mA. The SWITCH option includes additional circuitry to allow higher power switching.

-RELAY. High power switched relay outputs

While the SWITCH option may be used for 5V outputs, the relay option provides dual switch outputs (each with Common and Normally Open connections) to allow high power switching (up to 5A / 240Vac). Each output is isolated and independently controlled. This option is typically used for controlling external pumps or high-powered devices. It is recommended that externally wiring is performed by a suitably skilled professional, especially for applications using AC power.

-LATCH. Latching relay

The latching relay may be used to provide high power switching that does not consume power to hold in either the ON or OFF position. The -RELAY option requires constant power while the relay is held ON, whereas the -LATCH option only briefly requires power when switching from ON to OFF or vice versa. The -LATCH option can switch up to 2A of resistive current at 30VDC, 0.5A at 120VAC, and 0.3A at 250VAC.

-RS485. RS485 serial interface

The default RS232 port may be converted to an RS485 port instead. The RS485 port uses the 4 "Custom" terminals. Two RS485 ports are provided (1+/1- and 2+/2-) suitable for 2-wire half duplex instruments.

-STROBE. High visibility alarming

Integrated into the top of the Ai1 the strobe provides visual indication of alarm conditions. Powered from the internal SW12 output or using the -SWITCH, -RELAY or -LATCH power switching options.

-SIREN. Audible alarming

Integrated into the bottom of the Ai1 the siren provides a strong 120dB audible alarm under program control. Powered from the internal SW12 output or using the -SWITCH, -RELAY or -LATCH power switching options. The siren is able to mounted in a variety of fixed orientations

-PUMP. Peristaltic pump

Integrated into the bottom of the Ai1 the peristaltic pump may be used for a variety of applications, including the collection of a water sample through program control. Powered from the internal SW12 output or using the -SWITCH, -RELAY or -LATCH power switching options. The pump operates at up to 500mL/min flow rates

-6F. Bulkhead 6-pin Micro Wet-CON connector Integrated into the bottom plate of the Ai1 the bulkhead connector allows for quick connection of a wide variety of water quality sensors including the YSI EXO2 and EXO3, without opening the protective housing.

-SOA. EXO Signal Output Adapter (SOA)

Integrated inside the Ai1 with 4 wire connection using the "Custom" terminals. Often combined with the-6F bulkhead connector supplied prewired into the SOA ports. The SOA is wired to allow both the EXO2 and EXO3 sondes to be used. Uses SDI12 interface configurable to either C1 or C2 port.

-COMPASS. Internal compass

Useful for rotating platforms such as buoys to provide orientation correction for wind and current instruments. Uses SDI12 interface

-ACCEL. Internal accelerometer for tilt measurement

Dual X-Y analog measurements for tilt or movement detection. Uses two internal analog ports.

-LIGHT. Daylight sensor

Integrated top mounted daylight sensor for determining day and night conditions or periods of low light. May be useful for checking other sensor operation.

-BARO. Internal barometer

Integrated into the terminal area with a vent tube through the bottom plate. The internal analog barometer provides barometric pressure corrections for calculating level from absolute pressure sensors

-2MP. Integrated camera

Integrated onto the bottom terminal plate with adjust mounting option, the camera saves 2MP images to the internal storage, for transmission over the integrated communications. The camera may be triggered based on program control

Along with the integrated enhancements, a variety of sensor options are available for integrated sensor systems, such as the integrated Surface Velocity Radar / Laser Level combination station in Figure 3.

Figure 3 – Non-contact flow sensors

3. Unpacking

When unpacking, take care to keep the packet of parts supplied with the station, which includes:

- 1. The fuse and fuse cap
- 2. Gland options
- 3. Mounting kit options (if applicable)
- 4. Charging cable (if applicable)
- 5. Cable tie for SIM card

4. Overview

4.1 Opening Electronics Housing

Both the top and bottom plates may be opened to access in internal components. Fully unscrew the 6 screws holding the lid in position to open. Both top and bottom plates have an o-ring seal and may experience suction when trying to remove the plates. A suction cup may be used to pull out the plate, or a screw driver can be used to push the plate out from underside. When the top plate is removed, the top electronics can be lifted out. This is typical performed when installing or changing a SIM card

For easy alignment of the top or bottom plates, a red dot has been included on both the body and the plate itself. Ensure that the red dots are aligned before installing fully.

Figure 4 – Align red dots on the plate and the body

Figure 5 - Correct alignment is when the red dot is visible through the hole

When closing the top plate, take care to not overtighten the 6 screws or the plate may be damaged.

Figure 6 - Too much gap between plate and body

Figure 7 - Correctly tightened

4.1.1 Internal Regulators

The datalogger has a dedicated regulator (a step-up regulator to increase the voltage from the 3.7V lithium-ion battery) to operate from 12V. The normal range for the regulator voltage is 12V ±0.5V while the normal voltage for the lithium battery is 3.2V to 4.2V. Care should be taken to minimize voltage draw below 3.4V and prevent discharging below 3.2V.

A second regulator is provided to power external sensors. The regulator is able to be adjusted using a 20-turn trim pot to optimise power to the sensor. For conservation of power, the voltage should be as low as possible, however some sensors may require a specific voltage. The factory default is 12.0V. The trimpot may be adjusted as shown below.

Adjust trimpot here, in this direction

4.2 Bottom Terminal Plate

The main wiring and control of the Ai1 is via the terminal plate at the bottom of the system, protected behind a clear acrylic plate with an o-ring seal. Cable entry can be via the clear plate or via glands inside the side of the housing (as shown in the image to the right), depending on the application. It is recommended to use the clear acrylic plate if practical as these are available as replacement spare parts should the wiring and cable entry need to be changed.

The schematic of the terminal plate is as shown below.

CUSTOM port used for expansion options such as EXO Signal Output Adapter

4.2.1 USB Port

It is possible to power the Ai1 using the USB port to allow easy configuration, program and firmware uploads and basic operation. While powered from the USB port alone, some functionality may be limited. USB power does not power the communications system, or the Vout port, and voltage from Ex1 and Ex2 are limited to 2.5V approximately. On models with internal batteries, these do not charge from USB power. The free application "Device Configuration Utility" (hereafter called DevConfig) is used for configuring the station and is available for download from here: http://measci.com/devconfig

Refer to DevConfig help for connection instructions, following the steps shown below to establish a connection.

You will most likely need to install USB drivers on the first connection to the station. See Step 2 in the image above for more instructions.

If this is your first time using a Campbell Scientific datalogger system, a quick start video series may be useful to introduce basic concepts. Refer to the Training section for more information (section 6, page 24).

4.2.2 Power Switch

The switch controls power to the Ai1 depending on the model:

Model	Power
Externally Powered (EXT PWR)	The switch connects/disconnects the external 12V or 24V input
Battery Powered	The switch connects/disconnects the internal battery and external charging port. For models with a battery, an external charging cable plugs into the barrel connector through a hole in the bottom plate, as shown here. The charging port accepts 5 to 6V with the center pin +.
Solar Powered	The switch connects/disconnects the solar and battery power sources

If the Ai1 is powered through the USB port, the Ai1 will remain operational, although communications will stop.

The switch is inline with an internal fuse that is accessed by opening the Ai1 electronics housing as described in 4.1. By default, stations are shipped with a 3A fuse which may be replaced to alternative sizes if required. A battery measurement (if fitted) will only be available when the switch is on and the fuse is installed.

4.2.3 LEDs

Power status LED's are mounted on the top of the Ai1 and on the terminal plate, with a flash sequence indicating the power and program modes:

Table 1 – Red power LED functions

Off	No power
Double flash every 15 seconds	Operating on USB power. Restricted functionality. When running on USB power everything except the following operates as normal: - The internal modem will be off

	 Excitation ports limited to 2.5V rather than 5V Switched 12V will not operate
Single flash every 15 seconds	Operating on battery/solar power. Full system functionality
Always on	Program stopped or no program

4.2.4 I/O Terminals

All models have 20 terminals as described below. Some terminal functionality depends on the model selected. The terminals are 5mm spaced with a spring loaded levers, allowing wire gauges from 14 to 28 AWG.

Table 2 - Internal terminal functionality

Terminal	Description			
12V or 24V	Description / The function of this port is Model Dependent, and may be externally or solar powered as shown below Image: Solar powered as shown below Image: Solar powered models (designated by EXT PWR markings on the terminal plate, external power is to be applied into this port. Ensure that the arrow is indicating in (as show in the left image above). For external power, this may be 12V or 24V, which must be selected at the time of order. The model is as noted by the 12V or 24V next to the terminal. The full voltage range for each model is: 12V: 10 to 18V acceptable range 24V: 16 to 32V acceptable range SOLAR POWERED. For solar powered models.			
Vout	Adjustable Switched Power under program control, capable of 2A or more depending on voltage. The maximum continuous output current at various battery voltages is described in the table below			
		Ballery Vollage		
	50	4.2V (100% charged)	4.3A	
		3.7V (50% charged)	3.5A	
		3.2V (0% charged)	3.1A	
	9V	4.2V (100% charged)	2.6A	
		3.7V (50% charged)	2.1A	
		3.2V (0% charged)	1.7A	
	12V	4.2V (100% charged)	1.8A	
		3.7V (50% charged)	1.5A	
		3.2V (0% charged)	1.3A	
	Vout is adjustable from 5 to 20V output by opening the electronics housing and using the multi-turn trim pot. Vout does not provide any power if the system is only powered from the USB port. Note that Vout uses a "Step-up" regulator meaning that it can only provide voltages higher than the input voltage. For solar powered systems running from a 3.7V Lithium Ion battery, this provides the full 5 to 20V range of regulation. For externally powered systems running from 12V, this reduces the range to approximately 12.5 to 20V. The output voltage must be at least 0.5V higher than the input voltage or the regulator will emit high pitched "hum".			
Ex1 (5V)	Switched 5V excitation power under program control, limited to 50mA (current shared between both Ex1 and Ex2 ports). This port is limited to 2.5V when powered from USB. The voltage of the excitation port is controlled with a 12-bit DAC (from +150mV to 5000mV). While other output voltages are programmable, consideration needs to be given to impacts on other internally powered monitoring systems			

Ex2 (3.3V)	Switched 3.3V excitation power under program control, limited to 50mA (current shared between both Ex1 and Ex2 excitation ports). This port is also used to provide power to the internal GPS and other system peripherals. All specifications are the same as the 5V excitation port.
C1	Control Port 1 , typically used for SDI12 sensors. If SDI12 sensors are not used this may be used for other control functions, include RS232 Tx or Rx, a digital output with limited digital drive capacity (10mA at 3.3V), or a digital input (inputs -10V to +15V). May be used for interrupt triggering in program control.
C1	Control Port 1 , another terminal for additional SDI12 sensors. Functions the same as the other C1 port
C1	Control Port 1 , another terminal for additional SDI12 sensors. Functions the same as the other C1 port
G	System ground, used for power ground or analog reference
P_SW	Pulse Input, switch counting . Counts switch closures such as on tipping bucket rain gauges, security switches, relay contacts or wind sensors. Allows ±17.5V input voltage, 3mS pulse counting up to 150Hz for switch closures or up to 35kHz high frequency signals. May be used as digital output with extremely limited drive (0.1mA @ 3V)
P_LL	Pulse Input, Low Level AC.
Тх	RS232 serial port, Tx . Suitable for ±13V RS232 signals.
Rx	RS232 serial port, Rx. As per Tx port
A1	Analog Input 1 . 24-bit high precision analog inputs, -100mV to +2500mV input measurement range, with up to -6V to +9V sustained input voltage without damage. Accuracy over 0 to 40 °C operating range is \pm (0.04% of measurement + offset). Over full –40 to 70 °C operating range \pm (0.1% of measurement+ offset). May be used as single ended measurements or with A2 for differential voltage measurements. May also be used to measure 4-20mA current signals, resistance measurements, period averaging measurements, high frequency pulse counting (up to 35kHz) or PWM output. 5G Ω typical input resistance. >120dB DC common mode rejection with input reversal. Can be configured with A2 for quadrature input and for thermocouple measurement. May also be used with interrupt triggers for immediate program reaction. May be used as digital output with extremely limited drive (0.1mA @ 3V).
A2	Analog Input 2. As with A1.
A3	Analog Input 3 . As with A1 and A2 but cannot be used for current or quadrature measurements but may sustain ±17V input voltage without damage.
G	System ground, used for power ground or analog reference

4.2.5 Custom Expansion Port

The custom expansion port is specified at the time of order. Each Ai1 may be fitted with one of the following expansion options

Table 3 – Custom Expansion Port Options

Option	Description	Labels
Custom	Universal Inputs. Provides a set of 4 terminals that may be rewired internally to suit customer specific applications, such as providing access to additional analog inputs, terminals in parallel to an already available terminal (such as additional Vout, G or C1 connections), or for use with a customer supplied component. Two terminals U1 and U2 are provided, with 2 additional G terminals	U1 U2 G G

Com Port	Com Port Interfaces					
RS485	Converts normal RS232 port instruments. Two RS485 po	1+ 1- 2+ 2-				
UART	Converts normal RS232 port require UART voltage levels. voltages are normally 0-5V a Vout and G. +130 Idle -130 Start Bit LSB	Tx Rx Vout G				
12C	An additional slave board is as laser level sensor, barome two I2C signal wires (SDA an The I2C slave board must be instrument manual for instru	SDA SCL Vout G				
Power Ou	utput Peripherals					
Power Switch	The power switch provides 3 outputs A3, A4 and PSW. In an output current up to 800 A3, A4 and PSW outputs and	3 high current outputs from side the electronics housing mA. 4 terminals are provide d an additional Ground (G)	the normally low power are 3 x 5V regulators with d, one each for the boosted	A3 A4 PSW G		
Relay Output	The relay output peripheral provides two independently controlled dry contact A3+ switch outputs from the A3 and A4 outputs. Each relay output is a separate pair of A3- Common (C) and Normally Open outputs. I.e. Relay connected to A3 input has the common terminal wired to A3+ and the normally open terminal wired to A3 A4- Similarly, the relay connected to A4 has its own common terminal wired to A4+ and the normally open terminal to A4+. While the relay is rated to 8A, the contacts should only be used for up to 2A due to the wire sizes used internally.					
Multiplexers						
Analog	The analog multiplexer allow to 4 inputs. The analog mea as per the logic table below	A4_1 A4_2 A4_3				
	Off (0V)	Off (0V)	A4 connected to A4 1 terminal	+ 		
	On (5V)	Off (0V)	 A4_2 terminal	1		
	Off (0V)	On (5V)	A4_3 terminal]		
	On (5V)	On (5V)	A4_4 terminal			

	The multiplexer is bidirection or a digital output.			
Digital	As with the analog multiplex up to 4 inputs. Typically this - To read the state of - To read the serial ou The input is controlled by us	C1_1 C1_2 C1_3 C1_4		
Serial	The ports C1 and C2 are swit below	cched in a pair controlled by P_	SW as per the logic table	TX_2 RX_2
	P SW State	C1 connected to	C2 connected to	TX 3
	 Off (0V)	Tx 2	Rx 2	RX 3
	On (5V)	 Tx 3	 Rx 3	
	with TX/RX already included to Com1 depending on the P	by default. Within CRBasic the SW state.	ese ports are connected	
Miscellane	eous			
EXO SOA	The electronics housing may convert the proprietary EXO same labelled ports on the S section) or the EXO SOA doc	YEL WHY RED BLK		

Refer to the <u>CR300 product manual</u> for more detailed specifications on the I/O and program functionality.

4.2.6 Sensor Specific Wiring

The sensor specific wiring depends on the program requirements. The primary reference should always be the header of the program where a wiring reference is typically used, such as the example below

' SENSOR CABLE WIRING (SUBCON MCBH6M PINOUTS, ALL SENSORS HAVE SAME CABLE, DIFFERENT PINOUTS)						
' YSI EX02/EX03	1=Orange,	2=Black,	3=Red,	4=Shield,		
' Insitu Marine pinouts	1=Ground,	2=RS232 CR300 Tx,	3=N/C,	4=V+,		
' Insitu Marine PAR Short Black	1=Black(Black extn),	2=White (White extn),	3=Red(x),	4=Green(Red extn),		
' Insitu Marine DL3 Blue	1=Blue (Black extn),	2=Green+White (White extn),	3=none(x),	4=Brown (Red extn),		
' Insitu Marine DL3 15m EXO	1=Orange(Black ext),	2=Black (White extn),	3=Red(x),	4=Shield(Red extn),		
' Observator NEP5000.	1=Green(GROUND),	2=White(SDI12),	3=Brown(10-30V),	4=Blue(4-20mA/1000hm),		
' Global Water WL400. Red = Powe	r, Black = 4-20mA sign	nal (http://www.globalw.com	n/downloads/WL400/	WL400manual.pdf		

4.2.6.1 YSI EXO Sonde

The YSI EXO sonde depends on the model used (EXO2/EXO3), if a Signal Output Adapter (SOA) is used, if bulkhead connectors are used, and the specific ports allocated in the program.

Connector Pin	1	2	3	4	5	6
Function	SDI12	Ground	Power In	Shield	RS485	RS485
Wire Color	Orange	Black	Red	Bare	Yellow	White
Ai1 Wiring						
EXO2 (RS232 with SOA)	-	Custom BLACK	Custom RED	-	Custom YELLOW	Custom WHITE
EXO2 (SDI12 with SOA)	-	Custom BLACK	Custom RED	-	Custom YELLOW	Custom WHITE
EXO3 (SDI12 natively)	C2	G	12V or Vout	-	-	-

The red wire may be left disconnected for sensors using internal batteries, connected to 12V if continuously powered, or connected to Vout if power is controlled by the program. For EXO2 models the wiring uses the 4 terminal custom expansion port with color codes matching the wire colors. The internal wiring for the SOA is typically **C1** when using SOA in SDI12 mode, and ComRS232 when using SOA in RS232 mode. If an EXO3 is used with an SOA, which also supports SDI12 the orange wire should be wired into C2. The EXO3 will be available via the SOA on C1, or using native SDI12 on C2. When supplied with a bulkhead connector the wiring may be engraved on the acrylic plate, as shown in the image below. The image also shows the numbering of the connector pins.

Bulkhead connectors are normally supplied with white wires numbered 1 to 6. The connector pin reference should be used (i.e. 1 is SDI12, 2 is Power, 3 is Ground). In some circumstances, a bulkhead connector with color coded wires may also be used. These color codes do not match the table above. The Black wire is pin 1 (SDI12), White is pin 2 (Ground/Black), Red is pin 3 (Power/Red), Green is pin 4 (Shield/G), Orange is pin 5 (RS485/Yellow), Blue is pin 6 (RS485/White).

5. Mounting

The Ai1 supports top mounted options, bottom mounted sensors, magnetic mounting feet, or various pole mounting kit options. An overview of these options is provided here.

5.1 Top mounted options

An example of the top mounted options is the navigation lantern (Figure 10), Iridium communications option (Figure 1), or top mounted instruments such as wind speed and direction. These devices are designed to mount directly to the 4 x M6 threaded holes on the top of the unit. The M6 threaded holes are arranged on a 100mm x 100mm square as shown in Figure 12.

Figure 10 - Navigation light using top mounting bolts

Some configurations with bottom mounted sensors have easy access top mounted systems, such as the USB port and integrated bubble level (for stations requiring levelling). Incorrect level may significantly degrade instrument range and measurement accuracy for non-contact sensors. All installations should be confirmed to be within the inner 1° circle. For non-contact sensors mounted well above the water level, the USB port is mounted on the top plate for easy access, and protected with a rain cap. Ensure the rain cap is fitted at all times. The top mounted position is preferred to keep any potential obstructions away from the field of view of the non-contact sensors.

Figure 12 - Detailed drawing for top and bottom mounting

Figure 13 – M6 threaded inserts for top mounting devices such as navigation lantern

For installation locations that may be prone to bird damage, an optional bird spike kit is available. This may only be used where no other top mounted options use the mounting holes

Figure 14 - Bird Spike Kit

5.2 Bottom mounted sensors

The bottom 6mm clear acrylic plate can be supplied customized for bottom mounted sensors or solid for customization to suit the project. The bottom plate includes 4 x 6mm holes to suit M6 bolts on the same 100 x 100mm square as the top mounting plate.

Figure 15 – 6mm holes for M6 bolts. The 100mm square neatly fits M6 nut or bolt heads beside the Ai1 body

5.2.1 Sensor plate

Customized sensor plate for direct support of relevant sensors. Several examples are provided below, such as a surface velocity radar and laser level sensor are mounted on the plate with glands for cable entry, and an ultrasonic level sensor station

The sensor plate can be drilled and customised to suit a wide variety of sensors depending on the application, as shown in Figure 16. The acrylic plate is 6mm thick and can take threads from M3 to M20. Care should be taken for fine threads or threads with excessive force. When drilling and tapping, use a lubricant such as WD40 and take care when finishing the hole or the acrylic may crack from the edges. It is best to use progressively larger drills and using a light force when pushing down on the drill

5.2.2 Panel mounted connectors

For easy servicing of water quality sensors, panel mounted connectors may be used for easy connect and disconnect. This is particular attractive on buoy mounted systems for easy sensor cleaning and calibration, without opening the bottom plate in the field. As shown in Figure 16, the Ai1 is mounted on a bracket that allows the easy tilting of the station to expose the instrument tube through the centre of the buoy. The sensor is connected with a Subcon panel mount connector to allow quick disconnect without allowing water ingress or having small loose parts easily dropped in the water

Figure 16 – Buoy mounted Ai1 with panel mount connector

5.2.3 Customizable Gland Plate

The 6mm acrylic is easily drilled and threaded to suit various gland sizes, with a selection of glands included in the Ai1 kit. The plate has been marked with 3 laser engraved pilot marks for the ideal gland locations, although any location may be used. Replacement gland plates are available as a spare part.

Figure 17 - Bottom plate fitted with M12 and M16 glands for waterproof cable entry

5.2.4 Magnetic mounting feet

4 x 20mm high strength magnetic feet may be provided for quick mounting of the Ai1 to steel structures, without drilling. On suitable surfaces, the magnetic feet have a holding force > 10kg.

Figure 18 - Ai1 with magnetic feet to a mobile pump system, for temporary monitoring of pump operation. No drilling, easy relocation.

5.2.5 Side Cable Entry

For bottom mounted locations, such as the pump monitoring in Figure 18, side cable entry may be preferred to bottom cable entry. In situations like this, a side gland may be fitted

Figure 19 - Side gland cable entry

Figure 20 - Internal wiring for side gland entry

5.3 Pole Mounting Kit

A pole mounting kit suits a wide variety of vertical poles, up to 110mm in diameter. The kit includes two stainless steel clamps on the body of the Ai1, a pair of brackets and a pair of suitably sized stainless-steel clamps for the pole. Specify the approximate size of the pole clamp at the time of order

The pole mounting kit can also be rotated 90 degrees (and shifted up and down the Ai1 body) for mounting on two horizontal pipes. This image here shows the brackets rotated to allow for horizontal poles

6.Training

The Ai1 is designed to be as simple as possible while remaining versatile to a variety of applications. At the heart of the Ai1 is a Campbell Scientific CR300 datalogger. If you've never used an Ai1, or a Campbell Scientific datalogger, you will benefit from the watching video resources to introduce you to the concepts and techniques discussed in this guide.

CR300 Series. An introduction to the datalogger at the heart of the Ai1

- 1. Overview (1:46)
- CR300 <u>manual</u> section <u>0:42</u>
- USB cable. <u>1:08</u>

2. Configure Software and Monitor Data (5:18)

This series uses the licenced software LoggerNet. If you do not have LoggerNet, similar functionality is available with Device Config application as described in the instruction for the USB Port (section 4.2.1 on page 12). While the steps are not the same, DevConfig provides simpler steps.

- USB driver installation (<u>1:21</u>)
- Plugging in the USB cable (<u>1:44</u>)

3. Create a program and connect sensors (5:35)

In general, the Ai1 will be supplied with a program. You can probably skip to Public variables in the next video unless you want to write your own program

- 4. Send a program, collect and view data (3:30)
- Connect (<u>0:17</u>)
- Send a program (<u>0:41</u>)
- Public variables (<u>1:32</u>)
- Collect data (2:17)
- Viewing data (<u>2:51</u>)

A lot of the sensors used with the Ai1 support the SDI12 protocol, a digital serial protocol that allows remote diagnostics such as a terminal mode and a sniffer mode. These are powerful tools that often eliminate the need for a field visit

SDI12.	The protocol often used with sma	art sensors	
1.	SDI12 Transparent Mode (7:12)	CR1000>SDI12 Enter Cx Port 1,3,5 or 7 7 Entering SDI12 Terminal ?! 0 OA1_	Typical SDI-12 Commands: ?! Address Query aAb! Change Address a = current address b = new address
2.	SDI12 Watch or Sniffer Mode	T 07:36:50.12 R 07:36:50.21 R 07:36:50.55 T 07:36:50.56 R 07:36:50.55 T 07:37:00.03 T 07:37:00.12 R 07:37:00.21	OMI 00012 0 0D01 0+22.698+22.060 OMI 0MI 00012

While the Ai1 is generally supplied with a program, you may want to write your own. Shortcut is a tool described in the CR300 series for writing programs, but most Ai1 programs will use CRBasic. This video series guides you through the use of CRBasic.

CRBasic. The language used to program the Ai1	
1. <u>CRBasic Features (11:09)</u> CRBasic is a licenced program supplied as part of LoggerNet. If you need to purchase a licence, contact support	 (1:35) Using the Right Mouse Button (3:00) Syntax Highlighting (4:00) The Instruction Panel (5:10) Inserting Comments (5:55) Correcting Errors (7:00) F9/F10 Insert/Replace Variable (8:10) Bookmarks (9:05) Rebuild Indentation (9:30) Keyboard Shortcuts (10:00) Turning the Instruction Panel On and Off
 <u>CRBasic Help System (3:33)</u> The interactive help and instruction menu system makes it very easy to program. Use the help system extensively. 	VoltDiff Value Comment Variables: Destination DiffVolt Insert Insert Voltage Range mv2500C Insert Cancel DiffChan 1 Cancel Cancel RevDiff True Measure second time Low referent Help SettingTime 0 Integration 250 us integration Multiplier 1.0 Offset 0 Image: The set of the second time complexity of the second time complexi
3. <u>CRBasic Errors and How to Fix Them (12:07)</u>	 (1:20) An Undeclared Variable (3:10) Variable Out of Bounds (4:50) Illegal Float Destination Variable (5:50) Table Not Called AND Could Not Find Data Table (7:45) Invalid or Missing Parameter AND Too Many Parameters in an instruction (9:10) If Without EndIf (10:25) Data Interval Not Divisible by Scan
 <u>Using Variable Arrays, Repetitions and Aliases</u> (6:50) 	 Use Array notation when using repetitions Use Alias to assign unique names to array variables.

7. Sensor Specific Considerations

The Ai1 supports a variety of top and bottom mounted sensor options

7.1 LaserLEVEL or UltraLEVEL

The LaserLEVEL and UltraLEVEL are both non-contact level monitoring solutions that need special consideration:

- The sensor must have a clear view of the water surface below. UltraLEVEL has a beam spread of 8° (half angle, or off-center) while the LaserLEVEL has a beam spread of less than 0.5°. While the UltraLEVEL has filtering to reduce readings from small objects within the beam, best results are obtained with a clear view to the water surface below.
- A bubble level has been included on the top of the Ai1 to ensure the sensor is aligned perpendicular to the surface for maximum reflection. Ensure the bubble level is within the center circle

- The sensor reports distance to the surface. To convert to level readings, the measurement needs to be subtracted from the installation level. i.e.:
 - Level = Installation Level Distance Reading
 - For instance, if the installation level was 10.5m above sea level and the distance reading was 5.5m, the water surface would be 5m above sea level.

7.2 Camera

The camera includes the ability to rotate in any 360° direction as well as tilting through the full 180°. Adjust the rotate and tilt screws to set the desired fixed monitoring direction. It is recommended to make sure that the lens is pointing down to minimize fouling.

8. Power Budget

Solar powered stations are fitted with vertical mounted solar panels, with an air gap from the datalogger housing to minimize heating effects. Vertical integrated panels provide maximum self-cleaning and minimal installation size. Unlike traditional stations, these panels are intended to be faced typically East/West. The East/West orientation ensures maximum solar input in either the morning or afternoon sun and are suitable for rotating platforms. The 18W and 36W models each include an internal battery. The 18W model includes a 3.7V Lithium Ion (Li-Ion) battery rated at 25Ah, with a step-up regulator to run from 12V internally. The table below summarises the battery capacity at several example voltages:

Voltage	Battery Capacity	Usage scenario
	(Equiv.)	
10V	9.25Ah	Maximum efficiency, recommended. Confirm that all sensors operate at 10V
12V	7.7Ah	Most common, most compatible with 12V nominal sensors
18V	5.1Ah	Only use for high power sensors that require higher voltages

It is recommended to use 7Ah in all power supply calculations. For the 36W model, a 12Ah, 12V, Valve Regulated Sealed Lead Acid (VR-SLA) battery is used. The -EXT model is designed for external power for applications where an existing power supply is available on site, or more power than the standard models is required. In these applications the solar panel, regulator and batteries are all external to the system, provided separately.

When determining the power budget, it is recommended to perform detailed calculations including the duty cycle (on time / off time) for all subsystems and sensor power requirements, with safety factors to prevent deep battery discharge, and to allow for solar panel loses over time. A spreadsheet power budget calculator with example values for typical sensors, is available for download from:

www.measci.com/solar.xlsx

Approximate Sunshine Duration Method:

A significant factor in the power budget calculation is Sunshine Duration for the installation location. For initial calculations, the map below can be used to categorize locations.

Zone	Recommended Ai1 model	Measurement frequency and online state
<1.0	Ai1-EXT (External power)	Maximum power conservation
1.0-1.9	Ai1-36W (4x9W+12Ah VR SLA)	May require communications window, and slow
2.0-2.9		measurement updates
3.0-3.9		
4.0-4.9	Ai1-18W(2x9W+8Ah LiPo)	Ample power, full-time online, high frequency
5.0-5.9		measurements
6.0+		

Detailed Method:

Sunshine Duration is not the same as Equivalent Sunshine Hours which the spreadsheet uses. For detailed calculations, it is recommended to use the Apogee "Clear Sky Calculator" available from the Google Play store:

https://play.google.com/store/apps/details?id=com.apogee.clearsky

This app can be used to calculate the ESH for the worst day of the year (typically the winter solstice: 21st December in the Northern hemisphere, 21st June in the Southern hemisphere). If an Android phone is not available, a <u>web</u> <u>version</u> can be used although the setup data is more difficult. Select the size by Zipcode, by Map, or by entering the latitude and longitude, and configure the winter solstice day. The app will return the solar output at that time of day. Use a spreadsheet to record the output for each hour of the day and divide the total by 1,000 to calculate ESH.

While the categorization based on Sunshine Duration or detailed calculation for ESH may be used, consideration should be given to localized shading and platform movement. Additional sensors may require the Ai1-36W model.

Vertical Panel Angle Considerations

The solar panels on the Ai1 are mounted vertically to allow top and bottom mounting options, to suit the widest variety of locations (including higher latitudes) and to maximise self-cleaning. Solar panel power generation is specified with incoming solar radiation at 1,000W/m² perpendicular to the panel face. The solar panel power generation must be de-rated to allow non-perpendicular incoming energy. With fixed installations, winter sunshine is maximised by orientating the panel South (in the Northern hemisphere, or North in the Southern hemisphere). For a station installation at a latitude of 27.5°N, the panel would point South, at an angle of 50° (27.5° + 23.5° for the optimum declination at the winter solstice). For vertical panels in a fixed location, the panels are to be orientated East / West for morning and afternoon charging. In this arrangement, the panels must be de-rated by approximately 24%. The 2x9W panel arrangement is as effective as an optimum mounting for a single 6.8W panel. The performance is demonstrated in Figure 4.

Figure 21 - Power generation from optimum angle panels and vertical East/West (E/W) panels

For moving platforms, with two panels (i.e. 2x9W), the panel output must be de-rated by a further 50% to allow for the rotation of the panels (as the panels cover only 180° of the possible 360° orientations). For moving platforms with four panels (i.e. 4x9W) no further de-rating is required. In all configurations, the non-optimum panels do receive some reflected energy resulting in the equivalent values shown in Table 4.

Model	Fixed Installation	Moving Installation
2 x 9W (18W total)	7W equivalent	3.5W equivalent
4 x 9W (36W total)	9W equivalent	9W equivalent

Table 4 – Recommended Panel Size Equivalents

9. Communications

Ai1 products come in WIFI, CELLULAR and RADIO options. If you are unsure of the model provided, connect using USB and DevConfig. Under Deployment -> Datalogger, the OS version will include a reference to the comms

Device Configuration Utility 2.18		
<u>File B</u> ackup <u>O</u> ptions <u>H</u> elp		
Device Type	Deployment Logger Control Data Monitor Data Collection File Control Manage OS Settings Editor Termin	al
Q Search	Datalogger Com Ports Settings PPP Wi-Fi Network Services TLS Advanced	
CR300 Series	Serial Number: 4064	
CR3000	OS Version CR300-WIEL Std 07.05	
CR510-PB		

Under Deployment -> Datalogger will be a tab referring to the communications provided, Wi-Fi, Radio, Cell.

(Device Configuration Utility 2.18 <u>File</u> <u>Backup</u> <u>Options</u> <u>H</u> elp		
	Device Type	Deployment	
	Q Search	Datalogger Com Ports Settings PPP Wi-Fi Network Services TLS Advanced	
	CR300 Series	Configuration: Join a Network 🗸	
	CR3000		
	CR510-PB	Network Name (SSID): Example VIII	
	CR6 Series	Password:	

The integrated antenna is possible to be replaced in the field if damaged. Replacement parts are available. External high gain or directional antennas may be fitted with modifications to the station housing. It is recommended to mount a higher gain antenna through the top plate

10. Software

All stations are pre-programmed with a user editable CRBasic program. CRBasic files may be edited in a basic text editor such as Notepad or using the feature rich CRBasic editor, available from

https://www.campbellsci.com/crbasiceditor

The Ai1 uses a custom operating system file called Ai1OS.cr300 that includes many of the internal functions. It is recommended to use this operating system to simplify the station operation, status monitoring, Eagle.io connection and alarming. Advanced users may prefer to write these functions themselves and not use the operating system. The latest Ai1OS.cr300 file is available for download from

https://www.measci.com/ai1os.cr300

The current datalogger program may be downloaded direct from the station and edited as required. If you do this, you will also need to download a copy of the Ai1OS library file to the same folder that you do your editing for the local compiler to work, either from the datalogger or the web page above. If you fail to do this, an error such as that below will be displayed by CRBasic:

Version]C:\Campbellsci\Lib\Compilers\CR300Comp.exe VERSION:CR300.Std.07.05
 FloodSONIC.CR300 -- Compile Failed!
 line 19: Warning: Cannot open include file EnhancedOS_Enc.CR300.
 line 24: Sub Initialization not defined.
 Error(s) detected in the program. Double-click an error above to navigate to it.

CRBasic editing is an advanced topic and is not included in standard product support. Custom engineering may be performed with a support agreement. The top of the program provides the typical user configurable parameters

Const DESTINATION = "eagle"	' Options: eagle, loggernet, scada
Dim AccessPointName As String * 20 = "telstra.internet"	' Telstra: telstra.extranet (publicly routable) telstra.i
Dim SmsDestinationPhone As String * 16 = ""	
Const COMMS_DISABLED = False	Use this line if you need to turn the modem off for any
Const SCAN_INTERVAL = 2 's	' INTERVALS. Interval to scan the system
Const MEASUREMENT_INTERVAL = 600 's	' Interval to perform sensor measurements
Const DATA_STORAGE_INTERVAL = 600 's	' Interval to store sensor data
Const INSITU_ON_TIME = 20 's	' Total time for insitu sensor to take measurements
Const LOW_BATTERY_THRESHOLD = 3.2	THRESHOLDS. Internal lithium-polymer battery range 3.0
Const GPS_TIMER = 1	TIMERS. Timer to keep track of how long the GPS has be
Const INSITU SENSOR TIMER = 2	Any other timers to be placed in sequence here

The key parameters to configure are described below

AccessPointName	This must be configured to match the APN for the SIM card provided. In the example above, a Telstra card is used so the APN is "telstra.internet"
SCAN_INTERVAL	The interval between system scans. A faster scan rate uses more power but is more responsive
MEASUREMENT_INTERVAL	How frequently measurements are made
DATA_STORAGE_INTERVAL	How frequently data is stored

Unless necessary, a SCAN_INTERVAL of 5 seconds or less is recommended. Any shorter than this and the current consumption is significantly higher, while any slower than this and the current consumption savings are smaller, as summarised in

Figure 22 - 5s is the recommended scan rate for optimum balance of responsiveness and current efficiency

11. Data Destinations

The default option for data delivery is a 100% online connection to Eagle.io. The Ai1 supports all of the following data destinations:

- 6. Eagle.io
- 7. LoggerNet call-back¹ to a hosted LoggerNet system with a fixed IP address
- 8. DNP3 or Modbus² call-back to a SCADA or similar control system over the telemetry link
- 9. As a Modbus slave or SDI12 sensor over a local serial link
- 10. As an FTP client sending data to an FTP server
- 11. Email or SMS (on cellular models) data reports and alarms
- 12. HTTP web server or using HTTP API call-backs
- 13. Local display
- 14. Standalone datalogger for manual download

12. Eagle.io connection

12.1 Setup

The Ai1 is optimised for automatic connection to Eagle.io. At the top of the CRBasic, include the definition of DESTINATION as shown below. The Ai1 will automatically establish the connection to Eagle and use the inbuilt cell modem IMEI as the unique identifier. For reference, the default connection method (renewing Eagle.io connection every 15 minutes) results in data usage of approximately 1MB/day. Higher frequency connection or higher frequency data storage may result in higher data transfer.

¹ A call-back is where the Ai1 initiates a TCP/IP connection to a server on a specific port suitable for the proposed protocol. The server software would then manage the data transfer process

² Supports Modbus ASCII, Modbus RTU and/or Modbus TCP

Data Source Wizard		Data Source Wizard
Source type 2 c	onfigure data logger	Source type Configure data logger Source type
Model	CR200 Series	Connection
PakBus address	CR200 Series CR300 Series CR801 Series	Transport type TCP Callback
PakBus neighbor	CR101 peries CR3000 CR6	Device Id 014762000052570
Security code		verify cancel
3. Select CR30	0 Series model	

4. Set the connection to **TCP Callback**, **use existing** and use the **IMEI** number from the datalogger

The station will automatically configure the data tables and upload data to Eagle.io. For any other eagle.io functions, refer to the online documentation: <u>http://docs.eagle.io/en/latest/.</u> It is recommended to rename the Campbell Pakbus Datalogger to "Ai1" so it is easily identified

12.2 Swapping an Ai1 into an existing station

As Ai1's identify to Eagle.io by the IMEI of the modem, it is easy to swap out Ai1's and have the data continue seamlessly from the old to the new station. Once the new Ai1 is configured with the same program, the IMEI needs to be changed in Eagle.io. The two steps are:

 Right click on the Ai1 (as created in 12.1 above) and select properties

 Switch to the connection tab, click "Use Existing" and enter the IMEI of the replacement unit. When it next connects to Eagle.io it will identify as the existing station and append to the existing data set.

Transport type	TCP Callback 🗸	0	
Device Id	014762000051507 Change Lies evicting Last connected 5 days ago		
Retry attempts	3	0	
Retry delay	15 minutes 🗸 🗸	0	
Remote access	Off	0	
Session timeout	1 hour 🗸		
Allow access from My current address V			
Communications Alarr	n	0	
Category	Maintenance ~	0	
Notifications	Failed or Restored	0	

0

13. Pakbus Router (PBRouter)

If Eagle.io isn't used, the most common solution for connecting to a station with a cellular or wifi modem is to use Pakbus Router. Most SIM cards, including the Global SIM option do not have static IP addresses and are private connections through the service provider (i.e. the cellular network blocks inbound connections). PBRouter enables the routing of Pakbus based connections, through a URL and port. This enables the remote station to function with LoggerNet (paid licence), PC200W (free), DevConfig (free), LoggerLink (free, for iOS and Android) or a number of other software packages that support the Pakbus protocol. PBRouter is a lifetime subscription for the life of the Ai1 station. Multiple simultaneous Pakbus connections from various users to a single device can be used with PBRouter.

The following steps detail setting up the Ai1 with internal cellular or wifi modem. For other configurations, refer to the full PBRouter manual available here:

https://s.campbellsci.com/documents/us/manuals/konect-pakbus-router-getting-started-guide.pdf

13.1 Licence Details

A PBRouter Lifetime licence is an add-on option when purchasing an Ai1. Refer to your supplier for pricing. When PBRouter lifetime licence is purchased, the Ai1 will be supplied with a specific URL and Pakbus Address that must be used. The URL is **ventax.konectgds.com** with the Pakbus port **8410**. The Pakbus address must exactly matched the specific address issued for the station or conflicts will occur. Refer to the documentation supplied with your Ai1 for your specific address.

13.2 Setting up Ai1

Using DevConfig, on the Datalogger Deployment screen. The Pakbus Address field must be matched to the address issued. If a password is required, this will also need to be entered

Deployment Logger Control Data Monitor Data Collection File Control Send OS	Settings Editor Terminal
Datalogger Com Ports Settings Ethernet CS I/O IP PPP Network Services	Advanced
Serial Number: 1007 OS Version: CR 1000.5td.32.02 Station Name: 1007	PakBus Security Security Code 1: 0 * Security Code 2: 0 *
Pablus Address: 101	Security Code 3: 0 2 PakBus Encryption Key:
	Paidus/TCP Password:

On the Network Services tab, enter the URL and port described in your licence. Click **Apply** to save.

File Control Send OS S	ettings Editor Terminal		
	PakBus/TCP Clients Address	Port	
	ventax.konectgds.com	8410	•
		6785	-
		6785	*
		6785	A

13.3 Setting up Client software

The exact steps depend on the client software used, however they are illulstrated using LoggerLink below. The TCP settings are the URL and port as described earlier. The Ai1 uses a CR300 internally so the CR300 datalogger type should be selected. The name is any name that you use to identify the site. The address is the Pakbus address issued in your licence. The key step to make this work is that the Neighbour address must be set to 4070 which is the Pakbus address of the server providing the networking.

< 즹 Logg	jer Setup	SAV	/E	CANCEL	:
	TCP	Bl	uete	ooth	
TCP Settir	ngs				
Address	ventax.kon	ectgds.con	n		<i></i> ,
Port	8410]
Logger Se	ettings				
Туре		CR300) Se	eries	
Name KonectGDS					
PakBus Settings					
Address	1001				2
Neighbor	4070)			
Security C	ode 0				
TCP Pass	word				

Figure 23- LoggerLink setup. Note that neighbour 4070 must be configured

14. Preparing for field deployment

Ensure that the following steps are performed prior to field deployment

- 15. Install the SIM card (if required). Make sure that AccessPointName in the program and default.cr300 match the required APN or cellular communications will fail.
- 16. Install the system fuse (supplied in the kit of parts). This is removed for shipping.
- 17. Confirm that the datalogger and the modem are both using the latest operating system and firmware (see Figure 26) and that the correct program is set to run.
- 18. Perform a full Factory Acceptance Test (FAT) with the sensors to be used at each location and confirm that correct data is received. It is recommended to run overnight at least.
- 19. Inspect both o-ring grooves, making sure they are clean and recently greased with o-ring grease such as Krytox GPL 205. Clean and apply new grease if required
- 20. Fit a fresh desiccant pack to prevent any condensation damage. The Ai1 is fitted with internal humidity monitoring. It is recommended to replace the desiccant if humidity is above 60%. The desiccant packs change color from blue (good) to pink (bad) when the drying capacity is exhausted. The packs may be recharged by heating in an oven at 150°C (300°F) for 3 hours or more.

Figure 24 – Fresh desiccant is blue (left). When orange (right) the desiccant must be replaced. Failure to use fresh desiccant will likely result in internal condensation and equipment failure.

- 21. When closing the bottom plate, ensure that cables are neatly twisted, remain connected in the terminals and do not get crimped in the o-ring seal.
- 22. Inspect cable entry points (including solar panel cable entries on the side) and ensure seals are intact.
- 23. Mount in position using suitable bolts or mounting kit
- 24. Ensure any port covers are in place
- 25. Verify station operation by viewing the red LED flash sequence (single flash every 15 seconds)
- 26. After site installation, complete the Site Acceptance Test (SAT) form. Print and complete one form for each station. Ensure Ai1 is online before departing

15. Site Acceptance Test (SAT) Form

Site Name			
Ai1 Serial Number			
Ai1OS Version Number		(Refer to Ai1OSn.nn.cr300 filename)	
CR300 Operating System		Check latest version here	
Program Running	CR300		
Communications Type	🗆 Cell 🗆 Radio 🗆 Wifi 🗆 Iridium 🗆 None	□ Other:	
Communications IMEI		(See ModemIMEI public variable)	
SIM card service provider			
SIM card APN	□ APN:	(See AccessPointName)	
Default.CR300 program loaded	□ default.cr300	Failsafe if program compile fails	
APN set in Default.CR300	□ APN:		
Fuse installed	🗆 Main Fuse 🗆 Spare Fuse. Value:	Amp	
O-rings inspected	□ Top inspected & greased □ Bottom inspected & greased		
Desiccant pack	□ 50g in main compartment □ 10g in terminal area		
Internal humidity	% <40% or desiccant to be changed		
Humidity sticker	□ Blue (good) □ Pink (bad)		
Battery Type	□ Lithium (12.8V) □ Lithium (3.7V) □ None		
Regulator Voltage	Only Lithium 3.7V stations use		
Low Battery Settings	LowBatterySaverV. LowBattery	eryShutdown V.	
GPS fitted	GPS No GPS		
Location	Latitude:	Longitude:	
Reporting to	🗆 Eagle.io 🛛 Pakbus Router 🗆 Other:		
Communications online	□ Yes		
CellRSSI	dBm	Excellent: Less than -70dBm,	
		Good: -70dBm to -85dBm,	
		Fair: -85dBm to -100dBm,	
Sensor fitted	Туре:		
ReadNow test			
Concor notos			
Sensor notes			

Test completed by:	Witness (if required):
Name:	Name:
Position:	Position:
Signature:	Signature:
Date:	Date:

16. Servicing

It is possible to perform some more advanced servicing tasks with the right tool

16.1.1 Battery replacement

On the 18W system the battery is replaced

- Open the housing as described in section 4.1.
- Unscrew black wire from terminal block, pull through the hole in the clear acrylic and use insulation tape to protect from short circuit on conductive materials
- Repeat with the red wire
- Remove the IDC header strain relief plate shown in Figure 25
- Note the orientation of the IDC cable as it will need to be returned in the same location. Consider a photo to refer to later. Remove the plate holding the IDC cable in position and carefully leverage off the IDC header. Remove evenly or the 2x17 header pins may be bent.
- Fully remove the middle spacer on the bottom of the center assembly. Unscrew both ends and completely remove
- Loosen slightly the remaining spacers to allow the battery to slide out from the end
- To replace the new battery, reverse the steps above. When returning the IDC cable take care to ensure correct alignment using the red line on one end to the red markings on the 2x17 pin headers

16.1.2 Battery Shipping

In almost all situations, the Ai1 is able to be shipped with the Lithium Ion battery inside, however many airline regulations prevent the shipping of the battery alone. The Ai1 battery comes in two sizes, 25Ah (which is 92Wh) or 34Ah (125Wh). Many airlines limit the size of the battery to either 160Wh or 100Wh. Confirm with your airline specifically³. An example of the Delta airline requirements, at the time of reference:

- Customers are permitted to travel with lithium ion batteries that contain a maximum of 160-watt hours per battery.
 - Any lithium ion battery containing more than 160-watt hours is prohibited on all passenger aircraft.
- Lithium ion batteries installed in a personal electronic device can be transported as checked or carry-on baggage.
- Lithium ion batteries not installed in a device (spares) <u>must be</u> in carry-on baggage and no more than two (2) spares between 100 and 160-watt hours are allowed.

https://pro.delta.com/content/agency/us/en/policy-library/government-tsa/batteries.html

³ Qantas: <u>https://www.qantas.com/au/en/travel-info/baggage/dangerous-goods/spare-batteries-and-powerbanks.html</u>

17. Recommended field tool kit

Review the recommended tools before performing field work

Recommended	Advanced	Spare parts
 Personal Protective Equipment PPE (depending on site requirements). Steel cap shoes, High visibility long clothing, Wide brim hat, sunscreen, insect repellent, safety glasses, Personal Flotation Device, etc USB Micro-B cables USB to serial RS23 adapter 6mm socket & extension ¼" socket Drill set 1.0 to 6.0mm Battery Drill Multimeter Heat shrink and heat shrink gun Side cutters Wire strippers Soldering iron (gas recommended) and solder 	 M6 hand tap M4 hand tap M3 hand tap Self-amalgamating tape 2x Ratchet spanner for M6 nylock nuts 	 5x20mm fuses Clear bottom plate O-rings O-ring grease 8G screws M6 bolts and nylock nuts (for top and bottom mounting) M4 screws CR2012 lithium battery Assorted glands (M12, M16, M25), hole saws and/or hand taps

18. GPS Options

Ai1 stations commonly include an internal GPS for location tracking (i.e. any model with the -GPS option). For stations fitted with an integrated GPS, the following parameters are reported:

GPS_UTCtime	UTC time in the format HHMMSS, where HH are hours, MM are minutes and SS are
	seconds
GPS_Latitude_dddmm	Latitude and Longitude are reported in dddmm.mmm format, where ddd are
	degrees and mm.mmm are fractional minutes
GPS_LatitudeHemisphere	The Latitude and Longitude hemisphere are reported as positive and negative
	numbers depending on the hemisphere. Northern latitudes are +1 while southern
	latitudes are -1. Eastern latitudes are +1 while Western latitudes are -1
GPS_Longitude_dddmm	As above
GPS_LongitudeHemisphere	As above
GPS_QualityIndicator	A quality indicator representing the quality of the GPS fix.
	U=NO FIX,
	1=GPS Fix,
	0=NO FIX, 1=GPS Fix, 2=Differential Fix
GPS_HDOP	U=NO FIX, 1=GPS Fix, 2=Differential Fix Horizontal dilution of precision, a representation of the measurement uncertainty.
GPS_HDOP	U=NO FIX, 1=GPS Fix, 2=Differential Fix Horizontal dilution of precision, a representation of the measurement uncertainty. For a full definition: <u>https://gisgeography.com/gps-accuracy-hdop-pdop-gdop-multipath/</u>
GPS_HDOP GPS_Height	U=NO Fix, 1=GPS Fix, 2=Differential Fix Horizontal dilution of precision, a representation of the measurement uncertainty. For a full definition: https://gisgeography.com/gps-accuracy-hdop-pdop-gdop-multipath/ The estimated height of the location. Refer to HDOP for the uncertainty

For example, a buoy on the Columbia river near Portland Ohio (45°36'16.2"N, 122°38'44.9"W) <u>https://goo.gl/maps/dQhyfpNM9FKf2LEA7</u>, converted to decimal minutes would be:

Convert latitude: 45 + (36 + (16.2/60))/60 = 45.6045 (dd.mmm) Convert longitude: 122 + (38 + (44.9/60))/60 = 122.64581 (dd.mmmm)

Applying hemisphere corrections and converting to ddmm.mmm (by multiplying x 100), the reported location is 4560.450, -12264.581. For use in displaying the station location in Eagle.io, or other platforms, the location needs to be converted back to dd.mmm and decoding the hemisphere information. This is performed in Eagle by using a Logic Processor with the following steps

2. Create a Logic Processor

The parameters are decoded with the JavaScript described below. Both a screenshot (for seeing the location to enter the script) and the text (to copy and paste) are provided

Copy the text below:

// Convert Lat/Long
<pre>var LatA = NODE('/Ai1/GPS - GPS-Latitude-dddmm');</pre>
<pre>var LatB = NODE('/Ai1/GPS - GPS-LatitudeHemisphere');</pre>
var LongA = NODE('/Ail/GPS - GPS-Longitude-dddmm');
<pre>var LongB = NODE('/AII/GPS - GPS-LongitudeHemisphere');</pre>
Val Sign;
var uegleescalc,
var minucescare,
if (LatB < 0) {
sign = -1;
} else {
sign = 1;
}
degreesCalc = Math.floor(Number(LatA/100)); // Calculate the degrees part
<pre>NUMBER("lat") currentValue = (degreesCalc + minutesCalc)*sign: // Combine</pre>
NONDER(142). Carrenevarae (degreescare / minatescare) sign, // combrine
if (LongB < 0) {
sign = -1;
} else {
sign = 1;
}
degreesCalc = Math.floor(Number(LongA/100));
<pre>minutescalc = (LongA-(100^degreescalc))/60; // Calculate the minutes part NUMPER("long") currentWalue = (degreesCale + minutesCale) taign;</pre>
NOMBER(IONG).Cultentvalue - (degreescale + minutescale)^Sign;

Properties 🚽 bmt39	96/Cairns/FactoryTesting/Spare/Location Pro	cessor
General Collection Pro	cessing Series Historic Time Metadata	
Location coordinates	E Sensors	6
Latitude	J _M lat ◄	
Longitude	Jµ- long -	
E Sensors		≡
Series	Parameter assignment	Units
<i>J</i> _M lat	New Existing lat	Y
✓ J _h . long	New Existing long	Ŧ

Properties @ bmt396/Cairns/FactoryTesting/Spare						
General Historic Metadata						
Coordinates	-j Location Processor -					
Latitude	Fixed Location					
Longitude	-D Ai1					
Longitudo	- ラ Location Processor					
Map Marker						

Once the script is created, use the new points (lat and long) as the location coordinates for the processor

And set the location coordinates to the location processor

19. Fault Finding Process

Use the sequence below to diagnose potential problems

- 1. Power Check. What is the power light flash sequence? Look at the red LED beside this symbol : 🙂
 - Off: No power. Refer to step 2.
 - **1 flash every 10 seconds**: Ai1 is powered correctly, programming is running. Refer to step 3b
 - **2 or 3 flashes**: Ai1 is powered from the USB, not running from internal power. Refer to step 2
 - Always On: Powered correctly but no program is running. Refer to step 3a
- 2. **Power Fault Finding**. If the LED is not flashing correctly, the power has failed or needs to be switched on.
 - a. Check that the power switch is on
 - b. If externally powered, check the external power supply source. It must be between 10 and 18Vdc and correct polarity or damage will occur.
 - c. Make sure that the internal fuse is installed and not blown. A spare fuse is available inside the Ai1.
 - d. Remove the fuse and check that it is not blown (visual check and/or measure continuity).
 - e. If the Ai1 passes the steps above but the Power LED remains off, the Al1 may be temporarily powered from USB for more detailed diagnosis. Connect a USB cable from the USB port to your computer and confirm the LED flashes.
 - f. For internally powered units, look at the variable "BatteryVoltage" which displays the internal lithium battery voltage (nominal 3.7V, normal range 3.2 to 4.2V). If the battery voltage is <3.2V the battery has been discharged too far and is likely damaged. Open the cannister and measure the battery voltage directly. If the voltage is low, request a replacement battery spare part, otherwise look for secure connections.</p>
 - g. If all above steps fail, take a photo of the internal connections in the cannister and send to support for more detailed assistance.
 - h. If you hear a high pitched "hum" from a power supply, it indicates a device has high current draw and the supply voltage is dropping. Remove power device by device to isolate
- 3. **Program Fault Finding**. If the LED is on but the station is not doing what it was programmed to do, check the following steps. DevConfig is required for communication with the station, refer to the instructions in section 4.2.1.
 - a. If the LED is Always On, a program needs to be set to run. From the File Control option, make sure that the right program is selected with correct Run Options, Running, Power Up.
 Device Configuration Utility 2.21

-		
<u>File Backup Options H</u> elp		
Device Type	Deployment Logger Control Data Monitor Data Collection File Control Manage	OS * Settings Editor Terminal
Occurt		
	Send Format Refresh Retrieve	
^		
CR300 Series	Run Options Delete Stop	
CR3000		
	Drive Free	File Name A Run Ontions Size Last Modified
CR510-PB	bille free	
CR6 Series	CPU: 83.7 MB	Ai1_001_Enc.CR300 45.49 KB 06/21/19 10:12:06
GILD CLIED		BMT_Ai1_v4.CR300 Running, Power Up 23.84 KB 08/08/19 12:51:56
00000 0		

- b. For cellular models:
 - If the program is running, but a connection is not established to Eagle.io, make sure that the communication parameters are correct. Particularly the SIM card information. The Access Point Name (APN) must match the SIM card service provider. The settings vary depending on your service provider. For a global SIM card issued by Measurement Science, the APN is globaldata. Refer to your SIM card provider for further information. Find this line in your program to edit the APN:

Dim AccessPointName As String * 20 = "telstra.internet"

ii. The program provides extensive diagnostic information regarding the cellular service and internet connection. Use the **Data Monitor** to view **Public** variables such as and refer to the screenshot below for an example of a good connection. The connection to Eagle may be reestablished every 15 minutes so keep watching the connection message.

Device Configuration Utility 2.21							
<u>File Backup Options H</u> elp							
Device Type	Deployment Logger Contro	Data Monitor	Data Collectio	n File Control	Manage OS ★	Settings Editor	Terminal
O search							
	Public	nsorPowerKeepOr	1 -1				
🗄 Camera	Status	ssage	GP	S fix, read com	plete		
Cellular Modem	System Se	ialNumber	15	15,090			
Datalogger	Pro	gramCounter	35	,863			
CR 1000	Re	gulatorVoltage	9.9	981051			
CK1000	Ba	teryVoltage	3.9	915979			
CR 1000X Series	Ba	teryPercentage	84	. 10645			
CR 10X-PB	Int	ernalTemperature	21	21.9898			
CR200 Series	Pro	cessingTime	23	23			
CP 23Y-PB	Re	adGPSNow	0				
CICEDATE	GP	SString	\$ G	PGGA, 193029.0	000,1657.8925,5	,14547.6863,E,1	,08,1.02,-32.9,M,%
CR300 Series	GP	SLatitude	-16	5.96487			
CR3000	GPSLongitude		14	145.7948			
CR510-PB	We	bserviceStatus	Co	Connected to Eagle.io, staying connected until renewal time			
CR6 Series	We	bserviceInitiateTi	ransfer 0				
	We	bserviceLowPowe	er O				
CR800 Series	We	bserviceKeepOnli	ne 0				
CRVW Series	Ce	NetworkStatus	Sta	ate:Network rea	ady. 01. Signal Qualit:	v:-10. N	
Datalogger (Other)	Ce	li isageTodav, kb	37	9 8906		1. 101	2
GRANITE		lisageMonth kh	10	363.06			>
E Network Peripheral ✓	Ce	IMEI	01	4762000052422	2		
	Ce	lOperator	Te	lstra Mobile			
Connection Type	Ce	ITechnology	3G				

- iii. If the settings are correct but a cellular connection cannot be made, check the SIM card is correctly installed and secured, as shown in section 4.1
- iv. Connection problems are application specific and should be referred to your service provider.

20. Diagnostic Tips

20.1.1 Power related issues

 If the station is only providing data in the middle of the day, it is possible that the fuse is not fully tightened, that the fuse has blown, or that the battery is disconnected internally. Solar power is sufficient to operate the station without the fuse or battery connected. The symptom is that big gaps in the data start to appear from afternoon through to morning, as demonstrated in the example below

20.1.1 Software and diagnostics

- 1. DevConfig is the recommended tool for general communications
- 2. Listen for Windows notifications when a USB device is connected or disconnected when connecting through USB. This may indicate power problems, datalogger resets or remote program changes
- 3. If the datalogger fails to connect, yet gives the USB connection sound when plugging in, it may be busy performing another process. For particularly difficult connections, consider using a terminal program and pressing enter to return the CR300> prompt. It is possible to connect to a good unit, switch to terminal screen in DevConfig and then plug into another unit. Press enter to see if the difficult unit returns the prompt
- 4. When sending a program remotely (i.e. through Eagle.io), the program will report as failed, even though it has most likely transferred. The reason is that the last step of sending a program is to wait for the restart confirmation, however the connection to Eagle.io is managed by the program. On starting up, the modem will re-establish the connection which causes a timeout to be diagnosed as a program failure. The sequence of events as shown below will be reported by Eagle.io

ħ	2019-06-06 12:25:43	➔ bmt396/SCA - SW Data/Real-time SPD2/Real-Time Station	③ Program signature updated [45813 → 11917]	System
ħ	2019-06-06 12:25:37	➔ bmt396/SCA - SW Data/Real-time SPD2/Real-Time Station	1 Initiated acquisition [DEVICE]	System
۵	2019-06-06 12:25:21	➔ bmt396/SCA - SW Data/Real-time SPD2/Real-Time Station	Failed to apply configuration [BMT_Ai1.CR300: CampbellPakBusError.CLOCK_READ_ERROR]	System

The program can be confirmed as uploaded by observing that the program signatures updated. Confirm that the new signature matches the calculated signature from CRBasic. If DEBUGGING is enabled in the program, the System data table will store the program signature to know when changes have been made. When using Eagle's "Manage Configuration" feature, it is recommended to cancel the program sending after this error, to prevent the program being sent again, unnecessarily.

- 5. Always make sure all software is up to date. The three main steps are DevConfig, CR300 Operating System and Cellular firmware.
 - $\circ\quad \mbox{DevConfig.}$ The latest version of DevConfig can be confirmed from the Help menu

Device Configuration Utility 2.23		
<u>F</u> ile <u>Language Backup Options</u>	Help	
Device Type	Check for Updates	itor Data Colle
Q Search	ASSut	1
🗄 Camera	Serial Port Test	4 36 35 39
Cellular Modem	14:45:30.51 R 2E 30 2B 3	50 ZE 30 ZE
D Datalanan		

 CR300 Operating System. The latest version for the CR300 operating system is confirmed from the Manage OS tab.

Device Configuration L	Utility 2.2	3							
<u>F</u> ile <u>L</u> anguage <u>B</u> ackup	<u>Options</u>	<u>H</u> elp							
Device Type		Deployment	Logger Control	Data Monitor	Data Collection	File Control	Manage OS	Settings Editor	Terminal
Q Search	\otimes								
Camera		CR300							
🗉 Cellular Modem									
Datalogger		Current	t Version: 10.	00					
CR 1000		No upda	ates are availa	ble.					

This should be enabled to check automatically each time the Ai1 is connected. At the bottom of the manage OS window is the Check Automatic tick box which should be enabled.

	Update Check Automatically Show All Changes
0	Cellular Update. To check the current version, use the command SHOW CELLULAR INFO
-	CR300>SHOW CELLULAR INFO
	State : Dialed.
	PPP State : Down
	PPP Error : User interrupt.
	3G Cell network state: Registered.
	Operator : Telstra Mobile
	Technology : 36
	Bit error rate : 99
	RSSI : -65
	ECI0 : -8.00
	Manufacturer : Cinterion
	Model : EHS6
	Rev: 03.001
	A-Rev : 00.000.49
	Brio Ver : FW1.1.12
	IMEI : 014762000053636
	IMSI : 505013514462045
	CCID : 89610185002224127063
	Phone # :
	Figure 26 - Checking cellular firmware information

As can be seen here, the reported firmware version is FW1.1.12. The latest version at the time of writing is FW1.1.12. To update, enter CELLULAR UPDATE in terminal mode, at the CR300 prompt. Answer Yes to the confirmation question.

```
CR300>CELLULAR UPDATE
Are you sure? (YES/NO)
CR300>YES
Restarting cellular modem please wait . . .
Restarting modem in firmware update mode . . .
Waiting for modem initialization . . .
Cellular module version:FW1.1.12
Radio status:1,0
APN command sent .
APN Set.
Waiting for modem registration . . .
Radio status:1,0
Connect status:2,2,61
Sending firmware update command . . .
Firmware update command sent . . .
Waiting for command reply . . .
Response received . . .
Failure code received. Code:13
Firmware update retry . .
Firmware update command sent .
Waiting for command reply . .
Response received . .
Firmware update started. Please wait . .
Firmware update command was successful. Please wait . . .
Firmware update time : 00:30
Firmware update time : 01:00
Firmware update time : 01:30
Firmware update time : 02:00
Cellular module version:FW1.1.12
```

Figure 27 - Updating cellular firmware

- 6. Remote diagnostic tools. Use the following commands to watch the status of various operations or interact with serial sensors, using terminal mode on the datalogger. It is recommended to use DevConfig instead of LoggerNet connect for datalogger terminal connections, as DevConfig can switch between terminal and other screens (such as "Data Monitor") and have the processes run in parallel. LoggerNet terminal does not allow switching back to the main connect screen. From the CR300> prompt, use the following commands
 - SET COMMS WATCH. It is possible to watch the traffic on almost any port. Common options include 9 for SDI12 communications on port C1 and 12 for the status of the internal cellular connection. A shortcut for SET COMMS WATCH is W.

```
CR300>W
1: ComUSB
2: ComRS232
3: Coml
4: ComCl Tx
5: ComCl Rx
6: ComC2 Tx
7: ComC2_Rx
9: SDI 12 1
10: SDI 12 2
12: Cell Modem
13: DNP Trace
14: TCP/IP
15: Ethernet
16: IP Trace
Select: 12
Enter timeout (secs): 600
Comms watch started. Hit ESC to exit, any other key to renew timeout.
```


• P. Serial talk-through and listen. Similar to SET COMMS WATCH (with option 2 for ComRS232) it is possible to both watch traffic AND issue commands to talk to the serial instrument, however any datalogger commands the read the traffic will fail to read serial data while talk-through is active.

CR300>P
1: ComUSB
2: ComRS232
3: Coml
Select: 2
opening 2; press ESC ESC ESC to close
In-situ Marine Optics - Copyright (c) 2018.
Multispectral Light Logger
MS9 (SN:0033)
SD CARD LOGGING = ON
LOGFILE: MS9_DATA.TXT
MS9,0033,05/06/2019,09:52:42.000,0,13.12,74.66,18.7500,0.619,0.005,0.015,0.035,0.042,0.040,0.060,0.061,0.070,0.071

Figure 29 - Serial talk through to communicate directly with serial sensors

• **SDI12**. Similar to serial talk-through but customised for SDI12 communications. The screenshot below shows a sample SDI12 session to confirm that an instrument is operating correctly.

Deployment	Logger Control	Data Monitor	Data Collection	File Control	Manage OS	Settings Editor	Terminal
CR300>							
CR300>							
CR300>							
CR300>SI	DI12						
1: C1							
2: C2							
Select :	SDI12 Port:	1					
Enterin	g SDI12 Ter	minal. F	ress ESC to	o exit			
?!							
0							
01!							
013YSII	WQSGEXOSNDI	00					
OM!							
00179							
0D0!							
0+09301	9+033147+0.	00+0.00					
0D1 !							
0+0.00+	0.00+0.00+0	.00					
0D2 !							
0+0.00+	0.12+0.082						
-							
					N		
1					IN		

Figure 30 – SDI12 interactive session confirming correct sensor operation

Type {enter} several times	A CR300> command prompt is returned
Type SDI12{enter}	The Ai1 asks which port to use C1 or C2. C1 is normally used for
	SDi12
Type 1{enter} for C1	The Ai1 enters SDI12 terminal mode
Type ?!{enter}	The ? asks for any sensors connected to the bus to respond. The !
	must be at the end of all SDI12 commands to transmit the request.
	This only works if a single sensor is connected, otherwise all sensors
	may respond resulting in garbage. If multiple sensors are
	connected, disconnect some or advance to the next step
Туре 0!!	Assuming sensor address 0 responds, this asks for the sensor
	Identification. If a different address is used, substitute for this
	number in all subsequent commands. In this example, the
	instrument 013YSIIWQSGEXOSND100 responds, a YSI EXO sonde.
	The exact format of this response is manufacturer specific
Type 0M!	This initiates a measurement. The response is of the format atttn
	where a is the address, ttt is the time in seconds for the
	measurement to be ready and n are the number of data points. In
	this example the instrument responds with 00179 meaning
	instrument address 0 will have 9 parameters ready in 017s.
Wait at least ttt seconds	This requests the first block of data. The response is of the format
and type 0D0!	a+n.nnn+m.mmm+ where a is the address and n.nnn and m.mmm
	are measurements. If there are more measurements to return,
	request 0D1! and 0D2! for subsequent blocks of data until complete

SDI12 terminal mode can operate in parallel to datalogger issued SDI12 commands however SDI12 Failed or SDI12 Busy may be returned if the datalogger is performing another program operation.

CR300>SDI12			
1: C1			
2: C2			
Select SDI12 Port: 1			
Entering SDI12 Terminal. Press	ESC	to	exit
?!			
SDI12 Failed			

Figure 31 - SDI12 terminal mode without a sensor connected, powered up or configured correctly

- For advanced connections (such as FTP or email SMTP) it is possible to send filtered IP Trace information to a serial port, or to save these to a public variable. Refer to CRBasic help on IPTrace instruction for further details.
- For a full list of the available terminal commands, use both **HELP** and **H** for a list.

- 7. Unresponsive or slow datalogger. On power-up the datalogger will enable the modem and establish the connection to the destination. During this process the datalogger will be slow to respond to other services and may miss serial data or other commands. Use SET COMMS WATCH with option 12 to monitor the status of the modem and wait until a connection has been established.
- 8. If the GPS continuously responds with \$PGACK, \$PMTK011 and \$PMTK010 then it is most likely resetting due to power supply issues. Confirm that the voltage is a consistent 3.3V. Anything less than 3V and the GPS will reset.

21. Sending a new program

Setup Eagle.io for remote access. Log in to Eagle.io and navigate to the station that you want to update the program on. Right click on the station and select "Properties"

Selection the **Connection** tab and click **Remote access** to enable remote access. By default, Eagle.io will allow access for 1 hour, limited to your specific IP address. If you want longer, or from other addresses, set these before enabling remote access.

Note the client access address, in this case **remote.eagle.io:50835**. Your address will be randomly assigned. Copy this address

🖸 Ai1 🚺		
-J₀- System - BatteryVoltage	Expand	
-/γ₋ System - CellUsageMonth-kb		
Jγ⊱ System - CellUsageToday-kb	Create	Þ
Jγ⊷ System - GPSLatitude	🖍 Rename	
J _V - System - GPSLongitude	🕂 Move	
J _V - System - InternalTemperature	🗓 Delete	
J _V - System - ProcessingTime	Copy	
ルー System - ProgramCounter	Paste	
J _{V-} System - ProgSignature	-0,	
J _{M-} System - RegulatorVoltage	Notifications	Þ
J₀- WaterQuality - Conductivity - uScm	🌲 Alarms	Þ
Jγ⊷ WaterQuality - Depth - m	👑 Operate	Þ
Jy- WaterQuality - Dissolved Oxygen - %sat	Historic data	Þ
Jy- WaterQuality - Dissolved Oxygen - mgL		
J _V - WaterQuality - Salinity - PSU	Properties	

Properties

yule510/Xylem (Systems Internal)/Mt Gibson/Ai1

General Connection Collection Configuration Metadata Security Series Historic Time . 6 TCP Callback Transport type 014762000053206 Device Id Last connected 19 hours and Change Use existing Retry attempts 3 - B Ø Retry delay 15 minutes * Ð Remote access Session timeout 0 an hou 203.17.70.84/32 0 Allow access from Client access remote.eagle.io:50835 Current status LISTENING Scheduled collection, control and configuration will not be available while a remote client is connected. Communications Alarm 6 6 • Category Maintenance Ø Notifications Failed or Restored • Node Id: 5d5f6239405f490cd7a8e5e Save Cancel @ - optional custom id -

Use DevConfig to connect. Using DevConfig (free download as described earlier), select the **CR300 Series** datalogger, and use an **IP** connection type, with the server address set to the address copied in the previous step. The screenshot here shows the correct settings. Click **Connect** when ready.

Send the file. Once connected, select the File Control tab, and use the <u>Send</u> button to send the appropriate file. The file must be a unique name from the currently running file. Do not use the <u>Stop</u> button or the connection to Eagle may be lost and a site visit may be required to start the program.

Start the new program. Once sent, highlight the new program, and click the Run Options button. Select both Run Now and Run on Power Up and click Ok. The new program will now start. During this start, the program start will report as failed. This is normal as the old program is stopped, and therefore the internal modem is temporarily offline. Once the new program starts, a new connection will be made and a new DevConfig connection will need to be established, starting from "Use DevConfig to Connect".

A PakBus neighbour with address, 1, has been found. We must now load the settings for that device. Please wait while this happens ...

Deployment Logger Control Data Monitor Data Collection File Control Manage OS ***** Settings Editor Terminal

Find Datalogger

Send <u>F</u> ormat F	Refres <u>h</u> <u>R</u> etrieve			
Run gotons Dejete Drive Free CPU: 83.73 MB	File Name ▲ Ai1_002_Enc.CR300 BMT_Ai1_v5.CR300 default.cr300 StationConfiguration.cr300	Run Options Running, Power Up	Size 45.66 KB 24.89 KB 11.21 KB 446 B	Last Modified 08/21/19 12:50:12 08/21/19 12:50:26 06/20/19 10:35:50 05/31/19 10:26:10
Run Options CPU:BMT_Ai1_v5	.CR300			
Preserve existing data Replace existing data t	tables if possible ables			
Run on Power Up				

22. Declarations

22.1 For models including LaserLEVEL

22.1.1 Warning \Lambda

This device requires no regular maintenance. In the event that the device becomes damaged or is inoperable, repair or service must be handled by authorized, factory-trained technicians only. Attempting to repair or service the unit on your own can result in direct exposure to laser radiation and the risk of permanent eye damage. For repair or service, contact your dealer for more information. This device should not be modified or operated without its housing or optics. Operating this device without a housing and optics, or operating this device with a modified housing or optics that exposes the laser source, may result in direct exposure to laser radiation and the risk of permanent eye damage. Removal or modification of the diffuser in front of the laser optic may result in the risk of permanent eye damage.

22.1.2 Caution 🔬

This device emits laser radiation. This laser product is designated Class 1 during all procedures of operation. It is advisable to avoid looking into the beam when operating the device and to turn off the module when not in use.

Laser Notice

CLASS 1 LASER PRODUCT Classified EN/IEC 60825-1 2014

This product is in conformity with performance standards for laser products under 21 CFR 1040, except with respect to those characteristics authorized by Variance Number FDA-2106-V-2943 effective September 27, 2016

Measurement Science products are distributed globally by Xylem Analytics. Contact Xylem for support information. salesaus@xyleminc.com, +61 1300 995362

The Ai1 is intended to be part of a well maintained and comprehensive environmental monitoring system. Stations are provided for complete user customization and programming (programming services available). Reliable operation depends on suitable site selection, correct installation, real time monitoring of data, adequate maintenance and investigation of alarm and diagnostic information. Stations are designed to be mounted above maximum flood elevation, flooding may result in damage. In order to protect the design information, purchasers warrant to not reverse engineer the housing, components, software or supplier information. Refer to terms and conditions of sale for full details.

